Search results

1 – 4 of 4
Article
Publication date: 3 November 2023

Clement S.F. Chow, Wing Chi Chow, Weng I. Leong and Shizhe Zheng

Western manufacturers have often benefited from the Country-of-Origin (COO) effect when a product is launched into emerging markets. The authors examine if this still holds true

Abstract

Purpose

Western manufacturers have often benefited from the Country-of-Origin (COO) effect when a product is launched into emerging markets. The authors examine if this still holds true in the China market. The authors believe that the degree of perceived hedonism associated with the product does matter and, therefore, conducted an experiment to test how this influences the effect of COO on perceived quality and price of the product. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

A lab experiment with a 2 (COO: Western vs. Local) x 2 (Hedonism: High vs. Low) factorial design was conducted with Chinese consumers as subjects. The dependent variables were perceived quality and price of the products.

Findings

It was found that Western COO has a positive effect on the product perceived quality and price in the China market, but the effect was significantly moderated by the degree of perceived hedonism of the products.

Originality/value

The study used an experiment to investigate the different prominence of the COO effect on perceived quality and price in terms of hedonic vs. utilitarian products which has not been done previously. The findings provide implications concerning allocation of marketing resources to product positioning in the presence of different degrees of perceived hedonism and suggest additional areas for future examination.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 36 no. 4
Type: Research Article
ISSN: 1355-5855

Keywords

Open Access
Article
Publication date: 24 June 2021

Bo Wang, Guanwei Wang, Youwei Wang, Zhengzheng Lou, Shizhe Hu and Yangdong Ye

Vehicle fault diagnosis is a key factor in ensuring the safe and efficient operation of the railway system. Due to the numerous vehicle categories and different fault mechanisms…

Abstract

Purpose

Vehicle fault diagnosis is a key factor in ensuring the safe and efficient operation of the railway system. Due to the numerous vehicle categories and different fault mechanisms, there is an unbalanced fault category problem. Most of the current methods to solve this problem have complex algorithm structures, low efficiency and require prior knowledge. This study aims to propose a new method which has a simple structure and does not require any prior knowledge to achieve a fast diagnosis of unbalanced vehicle faults.

Design/methodology/approach

This study proposes a novel K-means with feature learning based on the feature learning K-means-improved cluster-centers selection (FKM-ICS) method, which includes the ICS and the FKM. Specifically, this study defines cluster centers approximation to select the initialized cluster centers in the ICS. This study uses improved term frequency-inverse document frequency to measure and adjust the feature word weights in each cluster, retaining the top τ feature words with the highest weight in each cluster and perform the clustering process again in the FKM. With the FKM-ICS method, clustering performance for unbalanced vehicle fault diagnosis can be significantly enhanced.

Findings

This study finds that the FKM-ICS can achieve a fast diagnosis of vehicle faults on the vehicle fault text (VFT) data set from a railway station in the 2017 (VFT) data set. The experimental results on VFT indicate the proposed method in this paper, outperforms several state-of-the-art methods.

Originality/value

This is the first effort to address the vehicle fault diagnostic problem and the proposed method performs effectively and efficiently. The ICS enables the FKM-ICS method to exclude the effect of outliers, solves the disadvantages of the fault text data contained a certain amount of noisy data, which effectively enhanced the method stability. The FKM enhances the distribution of feature words that discriminate between different fault categories and reduces the number of feature words to make the FKM-ICS method faster and better cluster for unbalanced vehicle fault diagnostic.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 25 February 2014

Yanan Luo, Qizheng Li and Shizhe Song

The purpose of this investigation was to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in seawater (flow velocity from 0 to 0.8 m/s, sediment content from 0 to…

Abstract

Purpose

The purpose of this investigation was to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in seawater (flow velocity from 0 to 0.8 m/s, sediment content from 0 to 0.15 percent), to analyze the effects of the flow velocity and sediment content on the erosion-corrosion process.

Design/methodology/approach

A simulated erosion-corrosion test system was set up. Weight loss determinations and electrochemical measurements (such as potentiostat square wave (PSW), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests) were used to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in stagnant and flowing seawater with different sediment contents.

Findings

Under the test conditions, ZHMn55-3-1 copper alloys had good corrosion resistance to stagnant clear seawater, while increasing the flow velocity and sediment content reduced the corrosion resistance of the material. The difference in the erosion-corrosion mechanism between flow velocity and sediment content was that the former affected both the cathode process and the anode process of electrochemical corrosion, while the latter essentially affected only the anode process.

Originality/value

This paper explains the effects of flow velocity and sediment content on the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in flowing seawater.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 August 2023

Xin Zhou, Wenbin Zhou, Yang Zheng Zhang, Meng-Ran Li, Haijing Sun and Jie Sun

This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.

Abstract

Purpose

This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.

Design/methodology/approach

The authors performed weight loss experiments, electrochemical experiments including the polarization curve and electrochemical impedance spectrum, corrosion morphology observation using scanning electron microscope (SEM) and atomic force microscope (AFM) and surface composition analysis via X-ray photoelectron spectroscopy (XPS) to analyze the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass by using quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir adsorption isotherm.

Findings

According to the results, imidazole-pyridine and its derivatives were found to be modest or moderately mixed corrosion inhibitors; moreover, they were spontaneously adsorbed on the metal surface in a single-layer, mixed adsorption mode.

Originality/value

The corrosion inhibition properties of pyrazolo-[1,2-a]pyridine and its derivatives on brass in sulfuric acid solution were analyzed through weight loss and electrochemical experiments. Moreover, SEM and AFM were simultaneously used to observe the corrosion appearance. Furthermore, XPS was used to analyze the surface. Then, Gaussian 09 and M-S were combined along with the Langmuir adsorption isotherm to investigate the corrosion inhibition mechanism of imidazole-[1,2-a]pyridine and its derivatives.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 4 of 4